Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 500
Filtrar
1.
Sci Rep ; 11(1): 14371, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34257382

RESUMO

Regular physical exercise enhances memory functions, synaptic plasticity in the hippocampus, and brain derived neurotrophic factor (BDNF) levels. Likewise, short periods of exercise, or acute exercise, benefit hippocampal plasticity in rodents, via increased endocannabinoids (especially anandamide, AEA) and BDNF release. Yet, it remains unknown whether acute exercise has similar effects on BDNF and AEA levels in humans, with parallel influences on memory performance. Here we combined blood biomarkers, behavioral, and fMRI measurements to assess the impact of a single session of physical exercise on associative memory and underlying neurophysiological mechanisms in healthy male volunteers. For each participant, memory was tested after three conditions: rest, moderate or high intensity exercise. A long-term memory retest took place 3 months later. At both test and retest, memory performance after moderate intensity exercise was increased compared to rest. Memory after moderate intensity exercise correlated with exercise-induced increases in both AEA and BNDF levels: while AEA was associated with hippocampal activity during memory recall, BDNF enhanced hippocampal memory representations and long-term performance. These findings demonstrate that acute moderate intensity exercise benefits consolidation of hippocampal memory representations, and that endocannabinoids and BNDF signaling may contribute to the synergic modulation of underlying neural plasticity mechanisms.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Endocanabinoides/metabolismo , Exercício Físico , Hipocampo/fisiologia , Memória , Adolescente , Adulto , Ácidos Araquidônicos/biossíntese , Comportamento , Biomarcadores/metabolismo , Endocanabinoides/biossíntese , Terapia por Exercício , Frequência Cardíaca , Humanos , Aprendizagem , Imageamento por Ressonância Magnética , Masculino , Plasticidade Neuronal , Alcamidas Poli-Insaturadas , Adulto Jovem
2.
Int J Mol Sci ; 21(22)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233525

RESUMO

We investigated the synthesis of N-docosahexaenoylethanolamine (synaptamide) in neuronal cells from unesterified docosahexaenoic acid (DHA) or DHA-lysophosphatidylcholine (DHA-lysoPC), the two major lipid forms that deliver DHA to the brain, in order to understand the formation of this neurotrophic and neuroprotective metabolite of DHA in the brain. Both substrates were taken up in Neuro2A cells and metabolized to N-docosahexaenoylphosphatidylethanolamine (NDoPE) and synaptamide in a time- and concentration-dependent manner, but unesterified DHA was 1.5 to 2.4 times more effective than DHA-lysoPC at equimolar concentrations. The plasmalogen NDoPE (pNDoPE) amounted more than 80% of NDoPE produced from DHA or DHA-lysoPC, with 16-carbon-pNDoPE being the most abundant species. Inhibition of N-acylphosphatidylethanolamine-phospholipase D (NAPE-PLD) by hexachlorophene or bithionol significantly decreased the synaptamide production, indicating that synaptamide synthesis is mediated at least in part via NDoPE hydrolysis. NDoPE formation occurred much more rapidly than synaptamide production, indicating a precursor-product relationship. Although NDoPE is an intermediate for synaptamide biosynthesis, only about 1% of newly synthesized NDoPE was converted to synaptamide, possibly suggesting additional biological function of NDoPE, particularly for pNDoPE, which is the major form of NDoPE produced.


Assuntos
Ácidos Araquidônicos/biossíntese , Ácidos Docosa-Hexaenoicos/metabolismo , Endocanabinoides/biossíntese , Etanolaminas/metabolismo , Lisofosfatidilcolinas/metabolismo , Neurônios/metabolismo , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/isolamento & purificação , Bitionol/farmacologia , Isótopos de Carbono , Linhagem Celular Tumoral , Cromatografia Líquida , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/isolamento & purificação , Etanolaminas/antagonistas & inibidores , Etanolaminas/isolamento & purificação , Hexaclorofeno/farmacologia , Cinética , Camundongos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Plasmalogênios/antagonistas & inibidores , Plasmalogênios/biossíntese , Plasmalogênios/isolamento & purificação , Alcamidas Poli-Insaturadas/antagonistas & inibidores , Alcamidas Poli-Insaturadas/isolamento & purificação , Espectrometria de Massas em Tandem
3.
Mol Cell Neurosci ; 109: 103566, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33049367

RESUMO

Human SH-SY5Y neuroblastoma cells stably expressing exogenous CB1 (CB1XS) or CB2 (CB2XS) receptors were developed to investigate endocannabinoid signaling in the extension of neuronal projections. Expression of cannabinoid receptors did not alter proliferation rate, viability, or apoptosis relative to parental SH-SY5Y. Transcripts for endogenous cannabinoid system enzymes (diacylglycerol lipase, monoacylglycerol lipase, α/ß-hydrolase domain containing proteins 6 and 12, N-acyl phosphatidylethanolamine-phospholipase D, and fatty acid amide hydrolase) were not altered by CB1 or CB2 expression. Endocannabinoid ligands 2-arachidonoylglycerol (2-AG) and anandamide were quantitated in SH-SY5Y cells, and diacylglycerol lipase inhibitor tetrahydrolipstatin decreased 2-AG abundance by 90% but did not alter anandamide abundance. M3 muscarinic agonist oxotremorine M, and inhibitors of monoacylglycerol lipase and α/ß hydrolase domain containing proteins 6 &12 increased 2-AG abundance. CB1 receptor expression increased lengths of short (<30 µm) and long (>30 µm) projections, and this effect was significantly reduced by tetrahydrolipstatin, indicative of stimulation by endogenously produced 2-AG. Pertussis toxin, Gßγ inhibitor gallein, and ß-arrestin inhibitor barbadin did not significantly alter long projection length in CB1XS, but significantly reduced short projections, with gallein having the greatest inhibition. The rho kinase inhibitor Y27632 increased CB1 receptor-mediated long projection extension, indicative of actin cytoskeleton involvement. CB1 receptor expression increased GAP43 and ST8SIA2 mRNA and decreased ITGA1 mRNA, whereas CB2 receptor expression increased NCAM and SYT mRNA. We propose that basal endogenous production of 2-AG provides autocrine stimulation of CB1 receptor signaling through Gi/o, Gßγ, and ß-arrestin mechanisms to promote neuritogenesis, and rho kinase influences process extension.


Assuntos
Endocanabinoides/fisiologia , Neuritos/ultraestrutura , Receptor CB1 de Canabinoide/fisiologia , Receptor CB2 de Canabinoide/fisiologia , Citoesqueleto de Actina/ultraestrutura , Amidas/farmacologia , Apoptose/efeitos dos fármacos , Ácidos Araquidônicos/biossíntese , Linhagem Celular Tumoral , Endocanabinoides/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Glicerídeos/biossíntese , Humanos , Lipase Lipoproteica/antagonistas & inibidores , Lipase Lipoproteica/metabolismo , Proteínas de Neoplasias/efeitos dos fármacos , Proteínas de Neoplasias/fisiologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Neuroblastoma , Orlistate/farmacologia , Oxotremorina/farmacologia , Toxina Pertussis/farmacologia , Alcamidas Poli-Insaturadas , Piridinas/farmacologia , Pirimidinas/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptor CB1 de Canabinoide/efeitos dos fármacos , Receptor CB2 de Canabinoide/efeitos dos fármacos , Proteínas Recombinantes/biossíntese , Transdução de Sinais , Xantenos/farmacologia
4.
Arch Toxicol ; 94(2): 427-438, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31912162

RESUMO

Chronic alcohol feeding increases the levels of 2-arachidonoylglycerol (2-AG) in the liver, which activates hepatic cannabinoid receptor type 1 (CB1R), leading to oxidative liver injury. 2-AG biosynthesis is catalyzed by diacylglycerol lipase (DAGL). However, the mechanisms regulating hepatic DAGL gene expression and 2-AG production are largely unknown. In this study, we show that CB1R-induced estrogen-related receptor γ (ERRγ) controls hepatic DAGL gene expression and 2-AG levels. Arachidonyl-2'-chloroethylamide (ACEA), a synthetic CB1R agonist, significantly upregulated ERRγ, DAGLα, and DAGLß, and increased 2-AG levels in the liver (10 mg/kg) and hepatocytes (10 µM) of wild-type (WT) mice. ERRγ overexpression upregulated DAGLα and DAGLß expressions and increased 2-AG levels, whereas ERRγ knockdown abolished ACEA-induced DAGLα, DAGLß, and 2-AG in vitro and in vivo. Promoter assays showed that ERRγ positively regulated DAGLα and DAGLß transcription by binding to the ERR response element in the DAGLα and DAGLß promoters. Chronic alcohol feeding (27.5% of total calories) induced hepatic steatosis and upregulated ERRγ, leading to increased DAGLα, DAGLß, or 2-AG in WT mice, whereas these alcohol-induced effects did not occur in hepatocyte-specific CB1R knockout mice or in those treated with the ERRγ inverse agonist GSK5182 (40 mg/kg in mice and 10 µM in vitro). Taken together, these results indicate that suppression of alcohol-induced DAGLα and DAGLß gene expressions and 2-AG levels by an ERRγ-specific inverse agonist may be a novel and attractive therapeutic approach for the treatment of alcoholic liver disease.


Assuntos
Ácidos Araquidônicos/biossíntese , Ácidos Araquidônicos/farmacologia , Endocanabinoides/biossíntese , Etanol/toxicidade , Glicerídeos/biossíntese , Lipase Lipoproteica/genética , Receptores de Estrogênio/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Lipase Lipoproteica/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptores de Estrogênio/genética , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia
5.
Addict Biol ; 25(3): e12768, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31056846

RESUMO

Individuals with alcohol use disorder exhibit compulsive habitual behaviors that are thought to be, in part, a consequence of chronic and persistent use of alcohol. The endocannabinoid system plays a critical role in habit learning and in ethanol self-administration, but the role of this neuromodulatory system in the expression of habitual alcohol seeking is unknown. Here, we investigated the role of the endocannabinoid system in established alcohol habits using contingency degradation in male C57BL/6 mice. We found that administration of the novel diacyl glycerol lipase inhibitor DO34, which decreases the biosynthesis of the endocannabinoid 2-arachidonoyl glycerol (2-AG), reduced habitual responding for ethanol and ethanol approach behaviors. Moreover, administration of the endocannabinoid transport inhibitor AM404 or the cannabinoid receptor type 1 antagonist AM251 produced similar reductions in habitual responding for ethanol and ethanol approach behaviors. Notably, AM404 was also able to reduce ethanol seeking and consumption in mice that were insensitive to lithium chloride-induced devaluation of ethanol. Conversely, administration of JZL184, a monoacyl glycerol lipase inhibitor that increases levels of 2-AG, increased motivation to respond for ethanol on a progressive ratio schedule of reinforcement. These results demonstrate an important role for endocannabinoid signaling in the motivation to seek ethanol, in ethanol-motivated habits, and suggest that pharmacological manipulations of endocannabinoid signaling could be effective therapeutics for treating alcohol use disorder.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Ácidos Araquidônicos/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Hábitos , Motivação , Animais , Ácidos Araquidônicos/biossíntese , Ácidos Araquidônicos/farmacologia , Benzodioxóis/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Depressores do Sistema Nervoso Central , Comportamento de Procura de Droga , Endocanabinoides/biossíntese , Etanol , Glicerídeos/biossíntese , Lipase Lipoproteica/antagonistas & inibidores , Cloreto de Lítio/farmacologia , Camundongos , Monoacilglicerol Lipases/antagonistas & inibidores , Piperidinas/farmacologia , Pirazóis/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores
6.
Sci Rep ; 9(1): 12866, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537814

RESUMO

Heavy use of cannabis (marijuana) has been associated with decreased semen quality, which may reflect disruption of the endocannabinoid system (ECS) in the male reproductive tract by exogenous cannabinoids. Components of ECS have been previously described in human spermatozoa and in the rodent testis but there is little information on the ECS expression within the human testis. In this study we characterised the main components of the ECS by immunohistochemistry (IHC) on archived testis tissue samples from 15 patients, and by in silico analysis of existing transcriptome datasets from testicular cell populations. The presence of 2-arachidonoylglycerol (2-AG) in the human testis was confirmed by matrix-assisted laser desorption ionization imaging analysis. Endocannabinoid-synthesising enzymes; diacylglycerol lipase (DAGL) and N-acyl-phosphatidylethanolamine-specific phospholipase D (NAPE-PLD), were detected in germ cells and somatic cells, respectively. The cannabinoid receptors, CNR1 and CNR2 were detected at a low level in post-meiotic germ cells and Leydig- and peritubular cells. Different transcripts encoding distinct receptor isoforms (CB1, CB1A, CB1B and CB2A) were also differentially distributed, mainly in germ cells. The cannabinoid-metabolising enzymes were abundantly present; the α/ß-hydrolase domain-containing protein 2 (ABHD2) in all germ cell types, except early spermatocytes, the monoacylglycerol lipase (MGLL) in Sertoli cells, and the fatty acid amide hydrolase (FAAH) in late spermatocytes and post-meiotic germ cells. Our findings are consistent with a direct involvement of the ECS in regulation of human testicular physiology, including spermatogenesis and Leydig cell function. The study provides new evidence supporting observations that recreational cannabis can have possible deleterious effects on human testicular function.


Assuntos
Ácidos Araquidônicos/biossíntese , Endocanabinoides/biossíntese , Glicerídeos/biossíntese , Receptor CB1 de Canabinoide/biossíntese , Receptor CB2 de Canabinoide/biossíntese , Células de Sertoli/metabolismo , Espermatócitos/metabolismo , Adulto , Amidoidrolases/metabolismo , Humanos , Hidrolases/metabolismo , Lipase Lipoproteica/metabolismo , Masculino , Monoacilglicerol Lipases/metabolismo , Fosfolipase D/metabolismo , Análise do Sêmen
7.
Bioprocess Biosyst Eng ; 42(10): 1591-1601, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31190282

RESUMO

An enhanced greenhouse effect due to high CO2 emissions has become one of the most concerning issues worldwide. Although plant/algae-mediated approaches have been extensively used for CO2 segregation in the last decades, these methods are generally aimed at environment protection. In contrast, less attention has been given to CO2 manipulation that has regrettably caused a decrease in the commercial availability of the associated technologies. To generate a system for practical use, a synthetic fluorocarbon photobioreactor system (FCPBRS) consisting of a CO2 isolation unit, a gas modulation unit, an O2 collection unit, and a microalgal culture chamber was developed in this study. After injecting a 60%-N2/40%-CO2 gas mixture into the CO2 isolation unit for 10 days, the results showed that the FCPBRS enabled a > 93% CO2 separation efficiency using a fluorocarbon liquid FC-40 as the CO2 adsorbent. In addition, the growth rate of Nannochloropsis oculata was significantly enhanced when cultured with 20 mL min-1 of the FC-40 flow containing 2% CO2 throughout the time course, resulting in 4.7-, 4.6-, and 4.5-fold (P < 0.05 for each) increases in biomass, total lipid, and eicosapentaenoic acid yields, respectively, compared to the aerated group without FC-40. Moreover, approximately 1600 mL of photosynthetic O2 with a ~ 80% collection efficiency was obtained in the O2 collection unit within 10 days of FCPBRS operation. These outcomes indicate that the FCPBRS may provide a feasible means to simultaneously achieve CO2 isolation, O2 collection, and enhanced microalgae bioproductions.


Assuntos
Reatores Biológicos , Dióxido de Carbono/metabolismo , Hidrocarbonetos Fluorados , Microalgas/crescimento & desenvolvimento , Oxigênio/metabolismo , Estramenópilas/crescimento & desenvolvimento , Ácidos Araquidônicos/biossíntese , Biomassa
8.
Lipids Health Dis ; 18(1): 56, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30832728

RESUMO

BACKGROUND: ω-3 polyunsaturated fatty acids (PUFAs) are synthesized from α-Linolenic acid (ALA, C18:3ω3) and play important roles in anti-inflammatory and antioxidant responses in mammal cells. ALA is an essential fatty acid which cannot be produced within the human body and must be acquired through diet. The purpose of this study was to evaluate the potential of a novel microalgal strain (HDMA-20) as a source of ω-3 PUFAs including ALA and eicosatetraenoic acid (ETA, C20:4ω3). METHOD: Phylogenetic Neighbor-Joining analysis based on 18S ribosomal DNA sequence was used to identify the microalga strain HDMA-20. Autotrophic condition was chosen to cultivate HDMA-20 to reduce the cultivation cost. GC-MS was used to determine the fatty acid composition of HDMA-20 lipid. RESULTS: A microalgal strain (HDMA-20) from Lake Chengfeng (Daqing, Heilongjiang province, China) was found to accumulate high content of ω-3 PUFAs (63.4% of total lipid), with ALA and eicosatetraenoic acid (ETA, C20:4ω3) accounting for 35.4 and 9.6% of total lipid, respectively. Phylogenetic analysis based on 18S ribosomal DNA sequences suggested that the HDMA-20 belonged to genus Monoraphidium (Selenastraceae, Sphaeropleales) and its 18S rDNA sequence information turned out to be new molecular record of Monoraphidium species. The biomass productivity and lipid content of HDMA-20 were also investigated under autotrophic condition. The biomass productivity of HDMA-20 reached 36.3 mg L- 1 day- 1, and the lipid contents was 22.6% of dry weight. CONCLUSION: HDMA-20 not only represent an additional source of ALA, but also a totally new source of ETA. The high content of ω-3 PUFAs, especially ALA, of HDMA-20, makes it suitable as a source of nutrition supplements for human health. In addition, HDMA-20 exhibited good properties in growth and lipid accumulation, implying its potential for cost-effective ω-3 PUFAs production in future.


Assuntos
Ácidos Araquidônicos/isolamento & purificação , Clorofíceas/metabolismo , Suplementos Nutricionais/análise , Microalgas/metabolismo , Ácido alfa-Linolênico/isolamento & purificação , Ácidos Araquidônicos/biossíntese , Processos Autotróficos/fisiologia , Biomassa , China , Clorofíceas/classificação , Clorofíceas/genética , Clorofíceas/crescimento & desenvolvimento , Suplementos Nutricionais/provisão & distribuição , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Lagos , Metaboloma/fisiologia , Microalgas/classificação , Microalgas/genética , Microalgas/crescimento & desenvolvimento , Filogenia , RNA Ribossômico 18S/genética , Ácido alfa-Linolênico/biossíntese
9.
Neurochem Int ; 125: 57-66, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30769029

RESUMO

In the study, the neuroprotectivities of forsythiaside, a main constituent of Forsythia suspensa (Thunb.) Vahl (F. suspensa, Lianqiao in Chinese), were investigated in the hippocampal slices. Forsythiaside suppressed the overexpression of cyclooxygenase-2 (COX-2) and monoacylglycerol lipase (MAGL) proteins induced by ß-amyloid (Aß25-35) to upregulate the levels of 2-arachidonoylglycerol (2-AG), an endogenous endocannabinoids. Then the inhibition of forsythiaside on COX-2 was deeply studied by the molecular docking. Forsythiaside prevented neuroinflammation and apoptosis from Aß25-35 insults, and this action appeared to be mediated via cannabinoid receptor 1 (CB1R)-dependent nuclear factor-κB (NF-κB) signaling pathways. More importantly, forsythiaside functionally improved Aß25-35-induced learning and memory deficits, which was indicated by long term potentiation (LTP). Taken together, forsythiaside may have therapeutic potential for Alzheimer's diseases (AD) by increasing the levels of 2-AG.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Ácidos Araquidônicos/biossíntese , Endocanabinoides/biossíntese , Glicerídeos/biossíntese , Glicosídeos/farmacologia , Hipocampo/metabolismo , NF-kappa B/metabolismo , Fragmentos de Peptídeos/toxicidade , Receptor CB1 de Canabinoide/metabolismo , Animais , Ácidos Araquidônicos/química , Agonistas de Receptores de Canabinoides/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Endocanabinoides/química , Glicerídeos/química , Hipocampo/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Técnicas de Cultura de Órgãos , Estrutura Secundária de Proteína , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
10.
Molecules ; 23(12)2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30558277

RESUMO

The synthesis of signal lipids, including eicosanoids, is not fully understood, although it is key to the modulation of various inflammatory states. Recently, isotopologues of essential polyunsaturated fatty acids (PUFAs) deuterated at bis-allylic positions (D-PUFAs) have been proposed as inhibitors of non-enzymatic lipid peroxidation (LPO) in various disease models. Arachidonic acid (AA, 20:4 n-6) is the main precursor to several classes of eicosanoids, which are produced by cyclooxygenases (COX) and lipoxygenases (LOX). In this study we analyzed the relative activity of human recombinant enzymes COX-2, 5-LOX, and 15-LOX-2 using a library of arachidonic acids variably deuterated at the bis-allylic (C7, C10, and C13) positions. Kinetic parameters (KM, Vmax) and isotope effects calculated from kH/kD for seven deuterated arachidonic acid derivatives were obtained. Spectroscopic methods have shown that deuteration at the 13th position dramatically affects the kinetic parameters of COX-2 and 15-LOX-2. The activity of 5-LOX was evaluated by measuring hydroxyeicosatetraenoic acids (8-HETE and 5-HETE) using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Deuteration at the seventh and 10th positions affects the performance of the 5-LOX enzyme. A flowchart is proposed suggesting how to modulate the synthesis of selected eicosanoids using the library of deuterated isotopologues to potentially fine-tune various inflammation stages.


Assuntos
Ácidos Araquidônicos/biossíntese , Ácidos Araquidônicos/farmacologia , Deutério/química , Inflamação/patologia , Araquidonato 15-Lipoxigenase/metabolismo , Ácidos Araquidônicos/química , Ciclo-Oxigenase 2/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos/química , Ácidos Hidroxieicosatetraenoicos/metabolismo , Cinética
11.
Neuropharmacology ; 141: 272-282, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30195587

RESUMO

Δ9-tetrahydracannabinol (THC) is recognized as an effective treatment for nausea and vomiting via its action on the cannabinoid 1 (CB1) receptor. Paradoxically, there is evidence that THC can also produce nausea and vomiting. Using the conditioned gaping model of nausea in rats, we evaluated the ability of several doses of THC (0.0, 0.5, 5 and 10 mg/kg, i.p.) to produced conditioned gaping reactions. We then investigated the ability of the CB1 receptor antagonist, rimonabant, to block the establishment of THC-induced conditioned gaping. Real-time polymerase chain reaction (RT-PCR) was then used to investigate changes in endocannabinoid related genes in various brain regions in rats chronically treated with vehicle (VEH), 0.5 or 10 mg/kg THC. THC produced dose-dependent gaping, with 5 and 10 mg/kg producing significantly more gaping reactions than VEH or 0.5 mg/kg THC, a dose known to have anti-emetic properties. Pre-treatment with rimonabant reversed this effect, indicating that THC-induced conditioned gaping was CB1 receptor mediated. The RT-PCR analysis revealed an upregulation of genes for the degrading enzyme, monoacylglycerol lipase (MAGL), of the endocannabinoid, 2-arachidolyl glycerol (2-AG), in the hypothalamus of rats treated with 10 mg/kg THC. No changes in the expression of relevant genes were found in nausea (interoceptive insular cortex) or vomiting (dorsal vagal complex) related brain regions. These findings support the hypothesis that THC-induced nausea is a result of a dysregulated hypothalamic-pituitary-adrenal axis leading to an overactive stress response.


Assuntos
Ácidos Araquidônicos/biossíntese , Dronabinol/administração & dosagem , Dronabinol/farmacologia , Endocanabinoides/biossíntese , Glicerídeos/biossíntese , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Monoacilglicerol Lipases/biossíntese , Náusea/prevenção & controle , Animais , Córtex Cerebral/metabolismo , Relação Dose-Resposta a Droga , Dronabinol/antagonistas & inibidores , Masculino , Náusea/induzido quimicamente , Ratos , Rimonabanto/farmacologia , Nervo Vago/metabolismo
12.
Biochem Pharmacol ; 157: 180-188, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30195734

RESUMO

While the endocannabinoid 2-arachidonoylglycerol (2-AG) is thought to enhance the proliferation and differentiation of oligodendrocyte progenitor cells (OPCs) in vitro, less is known about how endogenous 2-AG may influence the migration of these cells. When we assessed this in Agarose drop and Boyden chemotaxis chamber assays, inhibiting the sn-1-diacylglycerol lipases α and ß (DAGLs) that are responsible for 2-AG synthesis significantly reduced the migration of OPCs stimulated by platelet-derived growth factor-AA (PDGF) and basic fibroblast growth factor (FGF). Likewise, antagonists of the CB1 and CB2 cannabinoid receptors (AM281 and AM630, respectively) produced a similar inhibition of OPC migration. By contrast, increasing the levels of endogenous 2-AG by blocking its degradation (impairing monoacylglycerol lipase activity with JZL-184) significantly increased OPC migration, as did agonists of the CB1, CB2 or CB1/CB2 cannabinoid receptors. This latter effect was abolished by selective CB1 or CB2 antagonists, strongly suggesting that cannabinoid receptor activation specifically potentiates OPC chemotaxis and chemokinesis in response to PDGF/FGF. Furthermore, the chemoattractive activity of these cannabinoid receptor agonists on OPCs was even evident in the absence of PDGF/FGF. In cultured brain slices prepared from the corpus callosum of postnatal rat brains, DAGL or cannabinoid receptor inhibition substantially diminished the in situ migration of Sox10+ OPCs. Overall, these results reveal a novel function of endogenous 2-AG in PDGF and FGF induced OPC migration, highlighting the importance of the endocannabinoid system in regulating essential steps in oligodendrocyte development.


Assuntos
Ácidos Araquidônicos/fisiologia , Movimento Celular , Endocanabinoides/fisiologia , Glicerídeos/fisiologia , Oligodendroglia/fisiologia , Células-Tronco/fisiologia , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Ácidos Araquidônicos/biossíntese , Ácidos Araquidônicos/metabolismo , Agonistas de Receptores de Canabinoides/farmacologia , Antagonistas de Receptores de Canabinoides/farmacologia , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Corpo Caloso/citologia , Endocanabinoides/antagonistas & inibidores , Endocanabinoides/biossíntese , Endocanabinoides/metabolismo , Glicerídeos/antagonistas & inibidores , Glicerídeos/biossíntese , Glicerídeos/metabolismo , Ratos Wistar
13.
Cancer Res ; 78(17): 4865-4877, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30012669

RESUMO

Increased expression of cytochrome P450 CYP2C9, together with elevated levels of its products epoxyeicosatrienoic acids (EET), is associated with aggressiveness in cancer. Cytochrome P450 variants CYP2C9*2 and CYP2C9*3 encode proteins with reduced enzymatic activity, and individuals carrying these variants metabolize drugs more slowly than individuals with wild-type CYP2C9*1, potentially affecting their response to drugs and altering their risk of disease. Although genetic differences in CYP2C9-dependent oxidation of arachidonic acid (AA) have been reported, the roles of CYP2C9*2 and CYP2C9*3 in EET biosynthesis and their relevance to disease are unknown. Here, we report that CYP2C9*2 and CYP2C9*3 metabolize AA less efficiently than CYP2C9*1 and that they play a role in the progression of non-small cell lung cancer (NSCLC) via impaired EET biosynthesis. When injected into mice, NSCLC cells expressing CYP2C9*2 and CYP2C9*3 produced lower levels of EETs and developed fewer, smaller, and less vascularized tumors than cells expressing CYP2C9*1. Moreover, endothelial cells expressing these two variants proliferated and migrated less than cells expressing CYP2C*1. Purified CYP2C9*2 and CYP2C9*3 exhibited attenuated catalytic efficiency in producing EETs, primarily due to impaired reduction of these two variants by NADPH-P450 reductase. Loss-of-function SNPs within CYP2C9*2 and CYP2C9*3 were associated with improved survival in female cases of NSCLC. Thus, decreased EET biosynthesis represents a novel mechanism whereby CYPC29*2 and CYP2C9*3 exert a direct protective role in NSCLC development.Significance: These findings report single nucleotide polymorphisms in the human CYP2C9 genes, CYP2C9*2 and CYP2C9*3, exert a direct protective role in tumorigenesis by impairing EET biosynthesis. Cancer Res; 78(17); 4865-77. ©2018 AACR.


Assuntos
Ácidos Araquidônicos/biossíntese , Carcinogênese/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Citocromo P-450 CYP2C9/genética , Animais , Ácido Araquidônico/genética , Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Sistema Enzimático do Citocromo P-450/genética , Eicosanoides/biossíntese , Eicosanoides/genética , Células Endoteliais/metabolismo , Humanos , Camundongos , Polimorfismo de Nucleotídeo Único , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Neurobiol Dis ; 118: 64-75, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29936234

RESUMO

Management of levodopa-induced dyskinesias (LID) is one of the main challenges in the treatment of Parkinson's disease patients. Mechanisms involved in the appearance of these involuntary movements are not well known but modifications in the activity of different neurotransmitter pathways seem to play an important role. The objective of this study was to determine differences in the expression levels of the endocannabinoid system (ECS) elements that would support a role in LID. The basal ganglia nuclei, putamen, external segment of the globus pallidus (GPe), internal segment of the globus pallidus (GPi), subthalamic nucleus (STN) and substantia nigra (SN) were dissected out from cryostat sections obtained from two groups of parkinsonian monkeys treated with levodopa to induce dyskinesias. One group of dyskinetic animals was sacrificed under the effect of levodopa, during the active phase of LID, and the other group 24 h after the last levodopa dose (OFF levodopa). Biochemical analysis by real-time PCR for ECS elements was performed. CB1 receptor expression was upregulated in the putamen, GPe and STN during the active phase of dyskinesia and downregulated in the same nuclei and in the SN when dyskinetic animals were OFF levodopa. Changes in the 2-arachidonoyl glycerol (2-AG) synthesizing/degrading enzymes affecting the pallidal-subthalamic projections in dyskinetic animals OFF levodopa would suggest that 2-AG may play a role in LID. Anandamide (AEA) synthesizing/degrading enzymes were altered specifically in the GPe of untreated parkinsonian monkeys, suggesting that increased AEA levels may be a compensatory mechanism. These results indicate that the expression of the ECS elements is influenced by alterations in dopaminergic neurotransmission. On one hand, changes in CB1 receptor expression and in the 2-AG synthesizing/degrading enzymes suggest that they could be a therapeutic target for the active phase of LID. On the other hand, AEA metabolism could provide a non-dopaminergic target for symptomatic relief. However, further research is needed to unravel the mechanism of action of the ECS and how they could be modulated for a therapeutic purpose.


Assuntos
Ácidos Araquidônicos/biossíntese , Gânglios da Base/metabolismo , Discinesia Induzida por Medicamentos/metabolismo , Endocanabinoides/biossíntese , Glicerídeos/biossíntese , Levodopa/toxicidade , Receptor CB1 de Canabinoide/biossíntese , Animais , Ácidos Araquidônicos/genética , Gânglios da Base/efeitos dos fármacos , Discinesia Induzida por Medicamentos/genética , Endocanabinoides/genética , Feminino , Expressão Gênica , Glicerídeos/genética , Macaca fascicularis , Masculino , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Receptor CB1 de Canabinoide/genética
15.
Biotechnol Appl Biochem ; 65(1): 9-15, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28589628

RESUMO

2-Arachidonoylglycerol (2-AG) is an important endogenous signaling lipid that activates the cannabinoid receptors (CB1 R and CB2 R), thereby regulating a diverse range of physiological processes including anxiety, appetite, inflammation, memory, pain sensation, and nociception. Diacylglycerol lipases (DAGLs) are the principle enzymes responsible for 2-AG biosynthesis. Recently, the (patho)physiological functions of DAGLs have been explored by both genetic methods and chemical tools. This review will focus on the recent efforts to develop highly selective and in vivo active DAGLs inhibitors using activity-based protein profiling.


Assuntos
Ácidos Araquidônicos/biossíntese , Endocanabinoides/biossíntese , Glicerídeos/biossíntese , Lipase Lipoproteica/metabolismo , Animais , Ácidos Araquidônicos/química , Endocanabinoides/química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glicerídeos/química , Humanos , Lipase Lipoproteica/antagonistas & inibidores , Lipase Lipoproteica/deficiência , Estrutura Molecular
16.
Clin Exp Allergy ; 47(10): 1253-1262, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28763131

RESUMO

BACKGROUND: Arachidonic acid metabolites regulate several aspects of airway function including inflammation, muscle contraction and mucous secretion. OBJECTIVE: The aim of this study was to evaluate concentration of selected 5-lipoxygenase- and cyclooxygenase-derived eicosanoids in exhaled breath condensate (EBC) during allergen-induced bronchoconstriction. METHODS: The study was performed on 24 allergic rhinitis/asthma patients sensitized to a house dust mite (HDM) Dermatophagoides pteronyssinus (Dp) and 13 healthy controls (HCs). Bronchial challenge with Dp extract was performed only in the allergic patients. EBC samples were collected before (T0 ) and during Dp-induced bronchoconstriction (TEAR ). Eicosanoid concentration was measured using HPLC-tandem mass spectrometry. RESULTS: Significant bronchoconstriction after Dp challenge was demonstrated in 15 patients (Rs), while in 9 patients (NRs) no asthmatic response could be detected. At T0 the most abundant eicosanoids in EBC of HDM-allergic patients were LTB4 and 5-oxo-ETE, while in HCs EBC concentration of LTB4 was significantly greater than that of 5-oxo-ETE. Allergen challenge resulted in significant increase in EBC concentration of 5-oxo-ETE, LTD4 and 8-iso-PGE2 only in Rs. At TEAR , the relative change of 5-oxo-ETE concentration in EBC correlated with decrease of peripheral blood eosinophilia (R = -0.774; P = .0012). Moreover, the relative increase of 5-oxo-ETE in EBC at TEAR significantly correlated with the severity of the subsequent late asthmatic response (R = 0.683, P = .007). CONCLUSION: Our study demonstrates significant up-regulation of 5-oxo-ETE synthesis in HDM-allergic patients and indicates possible involvement of that mediator in the pathogenesis of allergic asthma.


Assuntos
Alérgenos/imunologia , Antígenos de Dermatophagoides/imunologia , Ácidos Araquidônicos/biossíntese , Broncoconstrição/imunologia , Expiração , Hipersensibilidade/imunologia , Hipersensibilidade/metabolismo , Pyroglyphidae/imunologia , Adulto , Animais , Ácidos Araquidônicos/análise , Biomarcadores , Eicosanoides/análise , Eicosanoides/biossíntese , Feminino , Humanos , Hipersensibilidade/diagnóstico , Masculino , Óxido Nítrico/metabolismo , Testes de Função Respiratória , Testes Cutâneos , Espectrometria de Massas em Tandem , Adulto Jovem
17.
J Comp Neurol ; 525(8): 1778-1796, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27997038

RESUMO

Elevation of intracellular Ca2+ concentration induces the synthesis of N-arachydonoylethanolamine (anandamide) in a subpopulation of primary sensory neurons. N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) is the only known enzyme that synthesizes anandamide in a Ca2+ -dependent manner. NAPE-PLD mRNA as well as anandamide's main targets, the excitatory transient receptor potential vanilloid type 1 ion channel (TRPV1), the inhibitory cannabinoid type 1 (CB1) receptor, and the main anandamide-hydrolyzing enzyme fatty acid amide hydrolase (FAAH), are all expressed by subpopulations of nociceptive primary sensory neurons. Thus, NAPE-PLD, TRPV1, the CB1 receptor, and FAAH could form an autocrine signaling system that could shape the activity of a major subpopulation of nociceptive primary sensory neurons, contributing to the development of pain. Although the expression patterns of TRPV1, the CB1 receptor, and FAAH have been comprehensively elucidated, little is known about NAPE-PLD expression in primary sensory neurons under physiological and pathological conditions. This study shows that NAPE-PLD is expressed by about one-third of primary sensory neurons, the overwhelming majority of which also express nociceptive markers as well as the CB1 receptor, TRPV1, and FAAH. Inflammation of peripheral tissues and injury to peripheral nerves induce differing but concerted changes in the expression pattern of NAPE-PLD, the CB1 receptor, TRPV1, and FAAH. Together these data indicate the existence of the anatomical basis for an autocrine signaling system in a major proportion of nociceptive primary sensory neurons and that alterations in that autocrine signaling by peripheral pathologies could contribute to the development of both inflammatory and neuropathic pain.


Assuntos
Inflamação/metabolismo , Nociceptividade/fisiologia , Fosfolipase D/biossíntese , Células Receptoras Sensoriais/metabolismo , Nervos Espinhais/lesões , Animais , Ácidos Araquidônicos/biossíntese , Axotomia , Western Blotting , Modelos Animais de Doenças , Endocanabinoides/biossíntese , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Dor Nociceptiva/metabolismo , Alcamidas Poli-Insaturadas , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia
18.
Pharmacol Res ; 111: 600-609, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27436148

RESUMO

Orexin 1 (OX-1R) and cannabinoid receptor (CB1R) belong to the superfamily of G-protein-coupled receptors (GPCRs) and are mostly coupled to Gq and Gi/o proteins, respectively. In vitro studies in host cells over-expressing OX-1R and CB1R revealed a functional interaction between these receptors, through either their ability to form heteromers or the property for OX-1R to trigger the biosynthesis of 2-arachidonoylglycerol (2-AG), an endogenous CB1R ligand. Since: i) OX-1R and CB1R co-espression has been described at postsynaptc sites in hypothalamic circuits involved the regulation of energy homeostasis, and ii) increased orexin-A (OX-A) and 2-AG levels occur in hypothalamic neurons during obesity, we sought here to investigate the OX-1R/CB1R interaction in embryonic mouse hypothalamic NPY/AgRP mHypoE-N41 neurons which express, constitutively, both receptors. Treatment of mHypoE-N41 cells with OX-A (0.1-0.3µM), but not with the selective CB1R agonist, arachidonyl-2-chloroethylamide (ACEA; 0.1-0.3µM), transiently elevated [Ca(2+)]i. Incubation with a subeffective dose of OX-A (0.1µM)+ACEA (0.1µM) led to stronger and longer lasting elevation of [Ca(2+)]i, antagonized by OX-1R or CB1R antagonism with SB-334867 or AM251, respectively. FRET and co-immunoprecipitation experiments showed the formation of OX-1R/CB1R heteromers after incubation with OX-A (0.2µM), or OX-A (0.1µM)+ACEA (0.1µM), but not after ACEA (0.2µM), in a manner antagonized by SB-334867 or AM251. OX-A (0.2µM) or OX-A (0.1µM)+ACEA (0.1µM) also led to 2-AG biosynthesis. Finally, a stronger activation of ERK1/2(Thr202/185) phosphorylation in comparison to basal or each agonist alone (0.1-0.2µM), was induced by incubation with OX-A (0.1µM)+ACEA (0.1µM), again in a manner prevented by OX-1R or CB1R antagonism. We suggest that OX-A, alone at effective concentrations on [Ca(2+)]i, or in combination with ACEA, at subeffective concentrations, triggers intracellular signaling events via the formation of OX-1R/CB1R heteromers and an autocrine loop mediated by 2-AG.


Assuntos
Ácidos Araquidônicos/farmacologia , Hipotálamo/citologia , Receptores de Orexina/metabolismo , Orexinas/farmacologia , Receptor CB1 de Canabinoide/metabolismo , Animais , Ácidos Araquidônicos/biossíntese , Cálcio/metabolismo , Linhagem Celular , Endocanabinoides/biossíntese , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicerídeos/biossíntese , Camundongos , Fosforilação/efeitos dos fármacos
19.
Methods Mol Biol ; 1412: 149-56, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27245901

RESUMO

The endocannabinoid 2-arachidonoylglycerol (2-AG) exerts its physiological action by binding to and functionally activating type-1 (CB1) and type-2 (CB2) cannabinoid receptors. It is thought to be produced through the action of sn-1 selective diacylglycerol lipase (DAGL) that catalyzes 2-AG biosynthesis from sn-2-arachidonate-containing diacylglycerols. Since 2-AG biosynthetic enzymes have been identified only recently, little information on methodological approaches for measuring DAGL activity is as yet available. Here, a highly sensitive radiometric assay to measure DAGL activity by using 1-oleoyl[1-(14)C]-2-arachidonoylglycerol as the substrate is reported. All the steps needed to perform lipid extraction, fractionation by thin-layer chromatography (TLC), and quantification of radiolabeled [(14)C]-oleic acid via scintillation counting are described in detail.


Assuntos
Ensaios Enzimáticos , Lipase Lipoproteica/metabolismo , Ácidos Araquidônicos/biossíntese , Cromatografia em Camada Delgada , Endocanabinoides/biossíntese , Glicerídeos/biossíntese , Radiometria/métodos
20.
Cell Rep ; 12(12): 1997-2008, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26365195

RESUMO

Cocaine is a highly addictive drug that acts upon the brain's reward circuitry via the inhibition of monoamine uptake. Endogenous cannabinoids (eCB) are lipid molecules released from midbrain dopamine (DA) neurons that modulate cocaine's effects through poorly understood mechanisms. We find that cocaine stimulates release of the eCB, 2-arachidonoylglycerol (2-AG), in the rat ventral midbrain to suppress GABAergic inhibition of DA neurons, through activation of presynaptic cannabinoid CB1 receptors. Cocaine mobilizes 2-AG via inhibition of norepinephrine uptake and promotion of a cooperative interaction between Gq/11-coupled type-1 metabotropic glutamate and α1-adrenergic receptors to stimulate internal calcium stores and activate phospholipase C. The disinhibition of DA neurons by cocaine-mobilized 2-AG is also functionally relevant because it augments DA release in the nucleus accumbens in vivo. Our results identify a mechanism through which the eCB system can regulate the rewarding and addictive properties of cocaine.


Assuntos
Ácidos Araquidônicos/metabolismo , Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Área Tegmentar Ventral/efeitos dos fármacos , Animais , Ácidos Araquidônicos/biossíntese , Transporte Biológico , Cálcio/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Endocanabinoides/biossíntese , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica , Glicerídeos/biossíntese , Masculino , Norepinefrina/antagonistas & inibidores , Norepinefrina/metabolismo , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos alfa 1/metabolismo , Receptores de GABA/genética , Receptores de GABA/metabolismo , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Recompensa , Transmissão Sináptica , Fosfolipases Tipo C/genética , Fosfolipases Tipo C/metabolismo , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/metabolismo , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...